首页 > 股票书籍 > 股票投资书籍 > 交易的成功之路

利用期望收益来评估不同的系统

来源:互联网2019-04-26 03:05:45

注意一下这个数与我们从禅球袋子中得到的期望收益是很不相同的。原因是这并不是以“每l美元风险的期望收益”形式表示的。因此把你的期望收益化简到每!美元风险的期望的期望收益也是很重要的。表6-3表示了这个交易产生的收入和亏损的分布。把这些交易以500美元的差距分组,仅仅是因为这么做比较方便,而且500美元好像能最佳地描述最小亏损额。当你察看利润和亏损组的分布时,可能会注意到最小亏损额。有一个特定的值在这个给定的分布中,这个最小亏损额大约是500美元。现在我们在某种程度上可以把这个表看作是一个弹球袋,来注意一下期望收益。这里我们通过把大致的收入或亏损额除以大致的最小亏损额500美元计算出回报。表6-4是执行这个计算后的结果这个系统基本上能在40%的交易中赚钱,就是36/90,可以略去的交易不计算在内。系统的总利润大约是10000美元,而且全部利润都归于一次交易,那次交易可以带给你14256美元的利润。你也同样会注意到,只要除去一次亏损,就是3221美元的那次亏损,就可以增加4O%的利润。你需要仔细地研究一下这些交易。是什么产生了大笔的收入?你能预期将来会更多吗?这种收入的几率只能是1.1%,还是你能找到更好的方法?如何产生亏损的呢?是什么导致了3221美元的亏损?这个亏损的真正期望收益是1.1%,还是你预期会比它更多或更少?亏损的原因是由于心理方面的错误吗?如果是这样,以后如何来避免这些错误呢?当你从如表6-4所示的回报矩阵角度来考虑系统时,就能回答上面一大堆问题了。我们可以应用期望收益公式(6-2)来确定每1 美元风险的期望收益。这里,我们通过加和盈利交易中的正期望收益得到以下总的正期望收益期望收益公式的正数部分= 0.167*1+0.111*2+0.067*3+0.033*5+0.011*9+0.011*25算完其中的乘法后,就可以得到0.167+0.222+0.199+0.165+0.099+0.275=1.127。因此,盈利交易的总的正期望收益是1.127美元。现在需要找出亏损交易的负期望收益,如下确定每个亏损组的结果期望收益公式的负数部分=0.367*1+0.189*2+0.033*3+0.011*6=0.367+0.378+0.099+0.066=0.91 因此, 亏损交易的总的负期望收益是91美分。同样,想得到每1美元风险的总的期望收益,我们只要把总的负期望收益从总的正期望收益中减掉就行$1.127- $0.91=$0.217。因此,这个系统每1 美元风险的期望收益是21.7美分。这给了我们一个更好的对比这个系统与其他系统的基础。一个10000美元的利润可能使一个系统看上去很不错,但是知道了这个系统中每1美元风险只能产生21.7美分的期望收益后,我们就会从一个不同的角度来审视它了。6.6 利用期望收益来评估不同的系统让我们来看一下两个不同的交易系统,从而确定期望收益是如何被利用的。6.6.1 弗雷德的系统第一个系统来自于一个叫做弗雷德的期货交易商。从5月1日-8月31日,他已经完成了21次交易,如表6-5所示。这个系统在四个月的21交易中赚了1890.43美元。这相当于平均每次交易盈利90.02美元。但是该系统的每1美元风险的期望收益是多少呢?我们把这个表分解成如表6-6所示的任意美元的组合。既然弗雷德的交易中最小亏损额大约在150美元左右,那么我们就把表6-6转化成如表6-7所示的几率矩阵,把150美元当作是最小风险额。我们也同样会除去那些可以略去的交易,最后,总共就剩下18次交易。现在把公式(6-2)应用到这个矩阵来大致确定一下每1美元风险的期望收益。首先计算一下盈利交易的正期望收益。正期望收益=0.056*1+0.056*2+0.056*3+0.056*8+0.111*13+0.056*25 算完乘法后,结果是0.112+0.168+0.448+1.443+1.4=3.627(美元)接下来必须计算亏损交易产生的负期望收益。负期望收益=0.111*1+0.278*2+0.111*3+0.056*8+0.056*25计算完乘法后,结果是0.111+0.556+0.333+0.448+1.4=2.848(美元)把负期望收益从正期望收益中减掉后就得到如下的总期望收益$3.627-$2.848=$0.779。因此, 弗雷德的系统在四个月的交易期间,每1美元风险产生78美分的期望收益。记住,在这些计算中有很多四舍五入。弗雷德的系统的一个最大缺点是,它有一次巨大的25:1的亏损, 抵消了一笔25:1的盈利交易。若是没有那次亏损,弗雷德的系统会非常出色。因此,弗雷德需要研究一下那个亏损,看看类似的亏损在将来是否能避免。