首页 > 股市要闻 > 财经

教育科学需要更加成熟 AI还是“文火慢炖”

来源:未知2021-03-26 00:39:40

李斌2016年回国加入龙之门教育集团负责技术研发工作,带领团队开发自适应学习相关应用,在他看来,一款AI教育产品的成功取决于底层技术、智能算法以及对教育深入洞察等多方因素的良好配合,是一个非常复杂的过程,但现阶段,底层技术的不完善是他在从业过程中最先感触到的困难。

“作为教育行业的从业者,我们希望国内的人工智能技术领军者能够把底层技术做扎实、做细致,确保技术真正是能用和好用的,这是最基础的。”李斌表示,AI在教育领域的所有应用都基于底层技术,然而国内大部分底层技术目前不尽成熟,与谷歌等全球科技巨头仍有很大差距。

李斌进一步表示:“像亚马逊,不仅能提供云计算平台、各类大数据优化的托管服务,而且每年上线的工具也高达上千个,能够为从业者数据分析、架构及机器学习提供很好的支持,还能充分利用共享资源的方式为企业节省成本。但反观国内一些云计算平台,保证不了计算量、运行速度特别慢,甚至里边还有很多坑需要从业者花大量的时间精力去填,这实在有点本末倒置,如果底层不是特别完善,我们谈上面的应用都是空中楼阁。”

在行业交流中,李斌也发现国际型的AI教育大会中90%左右的参会者依然在谈架构,讨论如何创造一个好的平台承载海量的数据、哪些数据是有用的、如何去处理这些数据等基础问题。但在国内,行业交流关注的重点已经到了产品与解决方案的应用层面,“我觉得第一步还是要发展我们的技术,国内的底层技术还有很大的进步空间,包括技术的使用成本也要降下来,这个条件具备了才能带动垂直领域更好地去应用,做出好的产品”。

数据量小且质量低

除了底层技术这一基石,现阶段数据数量少、数据质量低也正制约着AI在教育行业实现更多的可能。

“大数据是人工智能的信息来源与发展动力,要实现对学生的个性化关注,AI需要从大量的教学与学习数据中进行多维度的取样、分析,未来谁拥有更多的优质教学数据,谁就拥有主动权。”乐乐课堂CEO毛颖告诉记者,“但现在没有企业敢说自己拥有大数据,即使像好未来、新东方这样有一二十年积累的企业,以每年400万人次的学生、十余年的数据采集量来看,比起人工智能真正需要的海量数据(17.810, 0.00, 0.00%)还是比较小的,缺乏数据和内容的前提下AI很难解决效果问题。”

据了解,目前企业获取教育数据的方式主要有两种:一是从数字化的教学环境中实时收集数据;二是从现有教学过程中收集教育信息,然后将其转化为数据,数据量积累越大、类型越丰富,训练出的模型也就越精准,同时数据的反哺能力也会越强,从而形成良性循环。